LIBERTY PAPER SET

STD. 10 : Mathematics (Basic) [N-018(E)]

Full Solution

Time: 3 Hours

ASSIGNTMENT PAPER 4

Section-A

1. (D) No solution **2.** (A) $\sqrt{2}$, $-\sqrt{2}$ **3.** (C) 10 *d* **4.** (C) 10 **5.** (A) 1 **6.** (A) 30 **7.** 1 **8.** $-\frac{b}{q}$ **9.** 1 **10.** $\frac{1}{2}$ **11.** Intersection **12.** 50 **13.** False **14.** True **15.** True **16.** True **17.** 12 **18.** 7 cm **19.** $\frac{5}{9}$ **20.** $\frac{8x}{7}$ **21.** (c) $3\pi r^2$ **22.** (a) $\pi r^2 h$ **23.** (b) $\pi r^2 - \frac{\pi r^2 \theta}{360}$ **24.** (c) $\frac{1}{2}\pi r^2$

Section-B

 $\therefore 6x^2 - 9x + 2x - 3 = 0$

 $\therefore 3x (2x - 3) + 1 (2x - 3) = 0$

 $\therefore (2x-3)(3x+1) = 0$

$$\therefore 2x - 3 = 0$$
 and $3x + 1 = 0$

$$\therefore x = \frac{3}{2}$$
 and $x = -\frac{1}{3}$

26. Let the quadratis polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\therefore \alpha \beta = \frac{1}{4} \text{ and } \alpha + \beta = \frac{1}{4}$$

$$\therefore \frac{c}{a} = -\frac{1}{4} \text{ and } -\frac{-b}{a} = \frac{1}{4}$$

$$\therefore a = 4, b = -1, c = -1$$

So, one quadratic polynomial which become the given conditions is $4x^2 - x - 1$. You can check that any other quadratic polynomial that become these condition will be of the form k $(4x^2 - x - 1)$, where k is real.

27.
$$2x^2 - 5x + 3 = 0$$

 $\therefore 2x^2 - 2x - 3x + 3 = 0$
 $\therefore 2x (x - 1) - 3 (x - 1) = 0$
 $\therefore (x - 1) (2x - 3) = 0$
 $\therefore x - 1 = 0 \text{ or } 2x - 3 = 0$
 $\therefore x = 1$ $\therefore x = \frac{3}{2}$
 \therefore Roots of the equation : 1, $\frac{3}{2}$
28. Here, $a = 21$, $d = 18 - 21 = -3$
Suppose, n^{th} term $a_n = -81$
 $a_n = a + (n - 1) d$
 $\therefore -81 = 21 + (n - 1) (-3)$
 $\therefore -81 = 24 - 3n$
 $\therefore -27 = 8 - n$
 $\therefore n = 8 + 27$
 $\therefore n = 35$
Therefore, the 25th term of the comparison of the co

Therefore, the 35^{th} term of the given AP is -81

29. Here,
$$a = 15$$
, $d = 10 - 15 = -5$ and $n = 10$
 $a_n = a + (n - 1) d$
 $\therefore a_{10} = 15 + (10 - 1) (-5)$
 $\therefore a_{10} = 15 - 45$
 $\therefore a_{10} = -30$

Therefore, the 10^{th} term of the given AP is -30.

30. AB =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(1 - 5)^2 + (2 - 8)^2}$
= $\sqrt{16 + 36}$
= $\sqrt{52}$
= $2\sqrt{13}$

Thus, the distance between the given points is $2\sqrt{13}$.

31. Let, the given points be P(1, 5), Q(2, 3) & R(-2, -11). PO = $\sqrt{(1-2)^2 + (5-3)^2} = \sqrt{1+4} = \sqrt{5} = 2.24$ $OR = \sqrt{(2+2)^2 + (3+11)^2} = \sqrt{16+196} = \sqrt{212} = 14.56$ $PR = \sqrt{(1+2)^2 + (5+11)^2} = \sqrt{9+256} = \sqrt{265} = 16.28$ \therefore 2.24 + 14.56 = 16.80 \neq 16.28 \therefore PQ + QR \neq PR Same as, $QR + PR \neq PQ$ & $PQ + PR \neq QR$ Therefore, the given points are not collinear. **32.** $sin(A - B) = \frac{1}{2}$ $cos(A + B) = \frac{1}{2}$ \therefore sin(A – B) = sin 30° \therefore cos(A + B) = cos 60° $\therefore A - B = 30^{\circ}....(1) \quad \therefore A + B = 60^{\circ}....(2)$ Adding equation (1) and (2), $(A - B) + (A + B) = 30^{\circ} + 60^{\circ}$ \therefore A – B + A + B = 90° $\therefore 2A = 90^{\circ}$ ∴ A = 45° Put $A = 45^{\circ}$ in equation (1), $A - B = 30^{\circ}$ \therefore B = A - 30° \therefore B = 45° - 30° ∴ B = 15°

Hence, $A = 45^{\circ}$ and $B = 15^{\circ}$.

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{3}{4} + \frac{1}{4}$$
$$= 1$$

A
Pillar

34.

Here in \triangle ABC, \angle B = 90°

$$\therefore \quad \tan \ 30^\circ = \frac{AB}{BC}$$
$$\therefore \quad \frac{1}{\sqrt{3}} = \frac{AB}{15}$$
$$\therefore \quad AB = \frac{15}{\sqrt{3}}$$
$$\therefore \quad AB = 5\sqrt{3}$$

Therefore the height of the pillar is $5\sqrt{3}$ m.

35. Volume of cube = x^3

 $\therefore 125 = x^{3}$ $\therefore 5^{3} = x^{3}$ $\therefore x = 5 \text{ cm}$ $\therefore l = 2x = 2(5) = 10 \text{ cm}$ b = x = 5 cm CSA of cuboid = 2 (lb + bh + hl) $= 2 [(10 \times 5) + (5 \times 5) + (10 \times 5)]$ = 2 [50 + 25 + 50] = 2 (125) $= 250 \text{ cm}^{2}$ **36.**

Cylinder h = 1.45 m = 145 cm r = 30 cmHemisphere

The total surface area of the bird-drinker.

 $= 2\pi rh + 2\pi r^2$ $=2\pi r (h + r)$ $= 2 \times \frac{22}{7} \times 30 \times (145 + 30)$ $= 2 \times \frac{22}{7} \times 30 \times 175$ $= 33000 \text{ cm}^2$ Thus, TSA of the bird-bath is 33000 $cm^2 = 3.3 m^2$ **37.** mean $\bar{x} = a + \frac{\sum fiui}{\sum fi} \times h$ $=475 + \frac{29}{30} \times 15$ = 475 + 14.5= 489.5**38.** Let us assume that, Jayshree's present age = xPurvi's present age = ynerti Five years ago, Jayshree = x - 5Purvi = y - 5 \therefore As per condition (x - 5) = 3 (y - 5) $\therefore x - 5 = 3y - 15$ $\therefore \quad x - 3y = -15 + 5$ $\therefore x - 3y = -10$...(1) 10 years from now, Jayshree will be x + 10 & Purvi will be y + 10As per condition (x + 10) = 2 (y + 10) $\therefore x + 10 = 2y + 20$ $\therefore x - 2y + 20 - 10$ $\therefore x - 2y = 10$...(2) Subtract (2) from (1), x - 3y = -10x - 2y = 10_ + _ ∴ -y = - 20 Put y = 20 in eqn (1), x - 3y = -10 $\therefore x - 3(20) = -10$ $\therefore x - 60 = -10$ $\therefore \quad x = -10 + 60$ $\therefore x = 50$

Jayshree's present age = 50 years, Purvi's present age = 20 years.

= CSA of cylinder + CSA of hemisphere

39. 3x - 5y - 4 = 0 ...(1) 5y + 4

$$\therefore x = \frac{3y+4}{3}$$

$$9x = 2y + 7$$
...(2)

$$\therefore 9x - 2y - 7 = 0 \qquad \dots (3)$$

Put equation (2) in equation (3),

$$9x - 2y - 7 = 0$$

$$\therefore 9\left(\frac{5y + 4}{3}\right) - 2y - 7 = 0$$

$$\therefore 15y + 12 - 2y - 7 = 0$$

$$\therefore 15y - 2y = -12 + 7$$

$$\therefore 13y = -5$$

$$\therefore y = \frac{-5}{13}$$

Put $y = \frac{-5}{13}$ equation (2)

$$x = \frac{5y + 4}{3}$$

$$\therefore x = \frac{9}{13}$$

The solution of the equation : $x = \frac{9}{13}$, $y = \frac{-5}{13}$
40. Here, $a_2 = a + d = 14$ and $a_3 = a + 2d = 18$.

$$\therefore a + d = 14$$

$$a + 2d = 18$$

$$-\frac{---}{2}$$

$$\therefore d = 4$$

Put $d = 4$ in $a + d = 14$

$$a + d = 14$$

$$\therefore a + 4 = 14$$

$$\therefore a = 10$$

Now, $S_a = \frac{n}{2} [2a + (n - 1)d]$

$$\therefore S_{51} = \frac{51}{2} [2(10) + (51 - 1)4]$$

$$= \frac{51}{2} [20 + 200]$$

$$= \frac{51}{2} \times 220$$

$$= 51 \times 110$$

$$\therefore S_{51} = 5610$$

41. Suppose, the point P (x, 0) on the X-axis divides the line segment connecting the points A (1, -5) and B (-4, 5) in the ratio $m_1 : m_2$.

The co-ordinates of the dividing point P = $\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$ (x, 0) = $\left(\frac{-4m_1 + m_2}{m_1 + m_2}, \frac{5m_1 - 5m_2}{m_1 + m_2}\right)$

$$0 = \frac{5m_1 - 5m_2}{m_1 + m_2} \quad (\text{comparing } y \text{ co-ordinates})$$

$$\therefore 0 = 5m_1 - 5m_2$$

$$\therefore 5m_1 = 5m_2$$

$$\therefore m_1 = m_2$$

$$\therefore \frac{m_1}{m_2} = \frac{1}{1}$$

$$\therefore m_1 : m_2 = 1 : 1$$

$$x = \frac{-4m_1 + m_2}{m_1 + m_2} \quad (\text{comparing } x \text{ co-ordinates})$$

$$\therefore x = \frac{-4(1) + 1}{1 + 1}$$

$$\therefore x = \frac{-4 + 1}{2}$$

$$\therefore x = -\frac{3}{2}$$

Thus, the x-axis divides the line segment connecting the points A (1, -5) and B (-4, 5) at point $\left(-\frac{3}{2}, 0\right)$ in a 1 : 1 ratio.

42. Here, Q (0, 1) is equidistant from P (5, -3) and R (x, 6) as given :

$$\therefore PQ = QR$$

$$\therefore PQ^{2} = QR^{2}$$

$$\therefore (5 - 0)^{2} + (-3 - 1)^{2} = (0 - x)^{2} + (1 - 6)^{2}$$

$$\therefore 25 + 16 = x^{2} + 25$$

$$\therefore x^{2} = 16$$

$$\therefore x = \pm 4$$

If, $x = 4$;
 $QR = \sqrt{(0 - x)^{2} + (1 - 6)^{2}}$, $PR = \sqrt{(5 - x)^{2} + (-3 - 6)^{2}}$

$$\therefore QR = \sqrt{(0 - 4)^{2} + (1 - 6)^{2}}$$
, $PR = \sqrt{(5 - 4)^{2} + (-3 - 6)^{2}}$

$$\therefore QR = \sqrt{16 + 25}$$
, $PR = \sqrt{1 + 81}$

$$\therefore QR = \sqrt{41}$$
, $PR = \sqrt{82}$
Same as, $x = -4$;
 $QR = \sqrt{(0 - x)^{2} + (1 - 6)^{2}}$, $PR = \sqrt{(5 - x)^{2} + (-3 - 6)^{2}}$

$$\therefore QR = \sqrt{(0 - 4)^{2} + (-5)^{2}}$$
, $PR = \sqrt{(5 + 4)^{2} + (-3 - 6)^{2}}$

$$\therefore QR = \sqrt{16 + 25}$$
, $PR = \sqrt{81 + 81}$

$$\therefore QR = \sqrt{41}$$
, $PR = \sqrt{81 \times 2}$

$$\therefore PR = 9\sqrt{2}$$

Here, We have, $r_1 = 25 \text{ cm and } r_2 = 24 \text{ cm}$ Length of the chord $= 2 \sqrt{r_1^2 - r_2^2}$ $= 2 \sqrt{(25)^2 - (24)^2}$ $= 2 \sqrt{625 - 576}$ $= 2 \sqrt{49}$ = 2 (7)= 14 cm

Let the sides AB, BC, CD and DA of the quadrilateral ABCD touch the O centric circle at points P, Q, R and S respectively.

 $\therefore AP = AS \qquad \dots(1)$ $BP = BQ \qquad \dots(2)$

CR = CQ ...(3)

 $DR = DS \qquad \dots (4)$

Add equation (1), (2), (3) and (4)

AP + BP + CR + DR = AS + BQ + CQ + DS

- $\therefore (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$
- $\therefore AB + CD = AD + BC$

45. Here we get the information as shown in the table below using a = 225 and h = 50 to use the deviation method.

Daily expenditure (in ₹)	(f _i)	x _i	$\frac{u_i}{\frac{x_i - a}{h}}$	f _i u _i
100 - 150	4	125	- 2	- 8
150 – 200	5	175	- 1	- 5
200 – 250	12	225 = a	0	0
250 – 300	2	275	1	2
300 - 350	2	325	2	4
Total	$\Sigma f_i = 25$	-	-	$\Sigma f_i u_i = -7$

Mean
$$\overline{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$

 $\therefore \ \overline{x} = 225 + \frac{-7}{25} \times 50$
 $\therefore \ \overline{x} = 225 - 14$
 $\overline{x} = 211$

So, mean daliy expenditure on food is ₹ 211.

46.

The number of possible outcomes = $6 \times 6 = 36$

(i) The outcomes favourable to the event E 'the sum of the two numbers is 8' denoted by E = 5[(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)]

Hence, $P(E) = \frac{5}{36}$

(ii) All the outcomes are favourable to the event G, 'sum of two numbers ≤ 12 '.

So,
$$P(G) = \frac{36}{36} = 1$$

47. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

Proof: Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then, ADE =
$$\frac{1}{2} \times AD \times EN$$
,
BDE = $\frac{1}{2} \times DB \times EN$,
ADE = $\frac{1}{2} \times AE \times DM$ and
DEC = $\frac{1}{2} \times EC \times DM$.

$$\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB} \qquad \dots (1)$$

and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \dots (2)$

Now, Δ BDE and Δ DEC are triangles on the same base DE and between the parallel BC and DE. then, BDE = DEC

Hence from eq^n . (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

AD and PM are the medians of Δ ABC and Δ PQR respectively.

 \therefore BC = 2 BD and QR = 2 QM

Now, \triangle ABC ~ \triangle PQR

48.

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR}$$
$$\therefore \frac{AB}{PQ} = \frac{2 BD}{2 QM}$$
$$\therefore \frac{AB}{PQ} = \frac{BD}{QM}$$
Also, $\angle ABC = \angle PQR$
$$\therefore \angle ABD = \angle PQM$$

Now, \triangle ABD and \triangle PQM,

 $\frac{AB}{PQ} = \frac{BD}{QM} \text{ and } \angle ABD = \angle PQM$ $\therefore \Delta ABD \sim \Delta PQM \text{ (SAS criterion)}$

$$\therefore \ \frac{AB}{PQ} = \frac{AD}{PM}$$

49. We have,

 $\begin{aligned} x - \frac{1}{x} &= 3\\ \frac{x^2 - 1}{x} &= 3\\ x^2 - 1 &= 3x\\ x^2 - 3x - 1 &= 0\\ \text{Let's compare with } ax^2 + bx + c &= 0\\ a &= 1, b &= -3, c &= -1\\ b^2 - 4ac &= (-3)^2 - 4 (1) (-1) &= 9 + 4 = 13 \end{aligned}$

...(3)

$$x = \frac{-b+4al}{2a}$$
$$= \frac{-(-3)\pm\sqrt{13}}{2(1)}$$
$$= \frac{3\pm\sqrt{13}}{2}$$

Therefore, the roots of eqⁿ : $\frac{3+\sqrt{13}}{2}$, $\frac{3-\sqrt{13}}{2}$

- **50.** Here, a = 21, d = 18 21 = -3
 - Suppose, n^{th} term $a_n = -81$ $a_n = a + (n - 1) d$

$$\therefore -81 = 21 + (n - 1) (-3)$$

- $\therefore -81 = 21 3n + 3$
- $\therefore -81 = 24 3n$

$$\therefore -27 = 8 - n$$

$$\therefore n = 8 + 27$$

Therefore, the 35^{th} term of the given AP is -81

ert

Now, Suppose n^{th} term $a_n = 0$

$$a_n = a + (n - 1) d$$

 $\therefore 0 = 21 + (n - 1) (-3)$
 $\therefore 0 = 21 - 3n + 3$
 $\therefore 3n = 21 + 3$
 $\therefore 3n = 24$

$$\therefore n = 8$$

51.

So, the eighth term is 0.

Daily pocket allowance (₹)	Number of childern (<i>f</i> _i)	x _i	<i>u</i> _i	f _i u _i
11 – 13	7	12	-4	-28
13 – 15	6	14	-3	-18
15 – 17	9	16	-2	-18
17 – 19	13	18	-1	-13
19 – 21	f	20 = <i>a</i>	0	0
21 – 23	5	22	1	5
23 – 25	4	24	2	8
Total	44 + f	_	-	-64

Mean
$$\overline{x} = a + \left(\frac{\Sigma f_i u_i}{\Sigma f_i}\right) h$$

 $\therefore 18 = 20 + \left(\frac{-64}{44 + f}\right) 2$
 $\therefore 18 - 20 = \frac{-128}{44 + f}$
 $\therefore -2 = \frac{-128}{44 + f}$
 $\therefore 44 + f = \frac{-128}{-2}$
 $\therefore 44 + f = 64$
 $\therefore f = 64 - 44$
 $\therefore f = 20$

Hence, the missing frequency f is 20.

frequency (f_i) class cf 5 0 - 10 5 10 - 20 х 5 + X K 20 - 30 20 25 + *X* 30 - 40 15 40 + *x* 40 - 50 40 + *x* + *y* y 50 - 60 5 45 + *x* + *y*

Here, M = 28.5

52.

n = 60

Median class = 20 - 30

- l = lower limit of median class = 20
- n = total frequency = 60
- cf = cumulative frequency of class preceding the median class = 5 + x
- f = frequency of median class = 20

$$h = \text{class size} = 10$$

$$M = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

$$\therefore 28.5 = 20 + \left(\frac{\frac{60}{2} - (5 + x)}{20}\right) \times 10$$

$$\therefore 28.5 - 20 = \frac{(30 - 5 - x) \times 10}{20}$$

$$\therefore \frac{8.5 \times 20}{10} = 25 - x$$

$$\therefore 17 = 25 - x$$

$$x = 25 - 17$$

$$x = 8$$

Now,
$$\sum f_i = n = 60$$

 $\therefore 45 + x + y = 60$
 $\therefore 45 + 8 + y = 60$
 $\therefore 53 + y = 60$
 $\therefore y = 60 - 53$
 $\therefore y = 7$

Thus, x = 8 and y = 7.

- **53.** Total number of balls = 3 + 5 + 7 = 15
 - (i) Suppose event A is getting a red ball

$$\therefore P(A) = \frac{\text{Number of red ball}}{\text{Total number of ball}}$$
$$\therefore P(A) = \frac{3}{15} = \frac{1}{5}$$

(ii) Suppose event B is getting a black ball

$$\therefore P(B) = \frac{\text{Number of black ball}}{\text{Total number of ball}}$$
$$\therefore P(B) = \frac{5}{15} = \frac{1}{3}$$

(iii) Suppose event C is getting a white ball

$$\therefore P(C) = \frac{\text{Number of black ball}}{\text{Total number of ball}}$$

$$\therefore P(C) = \frac{7}{15}$$

(iv) Suppose event D is complementary of event C.

$$\therefore P(D) = 1 - P(C)$$

$$\therefore$$
 P(D) = 1 - $\frac{7}{15} = \frac{8}{15}$

54. Here, the number of possible outcomes is 6.

(i) Suppose event A is greater than 4. (5 and 6)

$$\therefore P(A) = \frac{\text{Number of greater than 4}}{\text{Number of possible outcomes}}$$
$$\therefore P(A) = \frac{2}{6} = \frac{1}{3}$$

(ii) Suppose event B is less than 4 or 4.

Here event B is complementary event of event A.

:.
$$P(B) = 1 - P(A) = 1 - \frac{1}{3} = \frac{2}{3}$$

(iii) Suppose event C is greater than 3 and less than 5 (only 4)

Here event B is complementary event of event A.

$$\therefore P(C) = \frac{\text{Number of greater than 3 and less than 5}}{\text{Number of possible outcomes}}$$
$$\therefore P(C) = \frac{1}{6}$$

(iv) Suppose event D is an even number.

$$(2, 4, 6 = 3)$$

 $\therefore P(D) = \frac{\text{Number of an even number}}{\text{Number of possible outcomes}}$

:.
$$P(D) = \frac{3}{6} = \frac{1}{2}$$